风冷模块空调系统,风冷模块的工作原理

1、风冷模块的工作原理

风冷热泵模块机组,是空调行业内区别于风冷冷水机组的一种空调机组。除具备风冷冷水机组制取冷水的功能外,风冷热泵模块机组还能切换到制热工况制取热水。风冷热泵模块机组的基本原理是基于压缩式制冷循环,利用冷媒做为载体,通过风机的强制换热,从大气中吸取热量或者排放热量,以达到制冷或者制热的需求。

对比风冷冷水机组,风冷热泵模块机组在机组内部至少增加了一个四通换向阀,做为制冷或制热的功能切换。风冷热泵模块机组的适用环境温度一般不得低于-5℃,否则会因为结霜除霜过于频繁而导致机组效率下降或者不能正常运行。但根据不同厂家的技术能力,适用范围有一定的偏差。目前比较先进的涡旋机中,采用了低温喷焓技术的机组往往能够适应更低的环境温度,同时拥有更高的机组效率。当然,此类机组的成本以及售价也都有一定程度的升高。

早期生产的制片机,有浸泡式和夹套式两种结构。这两种设备具有结构复杂、滚筒受压、夹套结垢后不易清理、水流分布不匀因而热交换效率低,造成滚筒表面温度不易降低等缺点。现在采用喷淋结构的制片机,设备简单,滚筒不受压,结垢易清理,冷却介质在滚筒内表面均匀分布,对滚筒内表面来说,冷却介质的温度均为进口温度,因而热交换效率高。

具体结构是:冷却介质进口管在滚筒内有科学分配器,在滚筒上部240b范围内装有喷嘴,喷嘴是一雾化装置,可将冷却介质高度雾化,喷射出空心圆锥雾化的冷却介质,到达滚筒内表面及端面,利用冷却介质汽化吸热而不是靠导热进行的热交换。出口管弯曲向下,离滚筒内底面距离为30到50mm,利用虹吸原理,将冷却介质排出,在滚筒内剩余量最少。为保证虹吸和直观见到冷却介质的虹吸排出,在出口管内装有一根小管,使滚筒内腔与大气相通。这一新颖设计取得非常好的效果,在不用喷射泵引流的情况下,能保证冷却介质排出的间歇时间最短,虹吸排出冷却介质的时间更长。冷却介质进、出口管在设备允许的情况下应选取直径较大者,减少冷却介质在冷却管中的压力损失。这种采用高级雾化喷淋冷却装置的制片机在烧碱行业制片中采用,取得明显的经济效益。360e熔融碱液经制片后可冷却到90e以下,直接进行后工序,即采用塑料编织袋包装,因而可免掉后面工序中的滚筒、螺旋冷却器等装置,既节约投资,又减少运行和管理费用。

用于风冷式冷热水机组除霜控制的方法一般有,时间控制法、时间温度控制法和蒸发温度与大气温度之差控制法等。时间控制法是早期的除霜控制方法,为防止翅片管表面严重结霜而影响机组工作,往往根据最恶劣的情况设定制热工作时间,这样会造成多余的除霜动作,造成能量损失,影响机组稳定工作;时间温度控制法,引入了温度量,较单纯的时间控制有改进,但仍不能实现根据需要除霜,仍会造成不必要的除霜动作或在翅片管表面严重结霜时还不除霜;由于结霜产生的对风侧换热器的气流阻力和霜层热阻的作用,因此,根据大气温度与机组蒸发温度之差来确定是否除霜,在一定程度上反映了机组对结霜的响应。

除霜过程中另一个问题是如何控制除霜时间,除霜时间短,翅片表面有残留水分,在下一个制热周期,水分很快在翅片表面结成冰,使机组制热性能恶化,从而使系统内质量流量迅速增大,若除霜时间过长,系统中冷凝压力升高,甚至引起高压保护,为此,可在除霜工作结束前,提前启动风机,既可使翅片上的残留水迅速被空气带走,又减少了一个制热循环开始时的吸排气压力波动,何时启动风机,可根据排气压力而定。

根据小型风冷式冷热水机组的结构型式及风侧换热器的结构,机组可分为下面几种。

(1)立式、斜侧出风式。较早推出的小型风冷式冷热水机组以这种型式为多。风侧换热器在上部,压缩机及水侧换热器在下部,斜侧出风的出风方式可防止逆风,但风机安装条件不如平侧出风和顶出风。

(2)立式、平侧出风式。风侧换热器在上部,压缩机及水侧换热器在下部,平侧出风的出风方式,风侧换热器的迎面风速比较均匀,但在机组安装时要注意不要使风机直接顶风,否则风机不能正常工作。立式机组占地面积小,一般可放置在屋前或阳台上。

(3)卧式、平侧出风式。

(4)卧式、顶出风式。

卧式机组降低了机组高度,一般可置于屋顶。

与平侧出风方式相比,顶出风式的机组,其风侧换热器的迎面风速不均匀,换热器上部与下部换热条件相差较大。对于卧式机组,可将压缩机和水侧换热器等制冷部件置于风侧换热器内,也可将压缩机及水侧换热器等制冷部件置于风侧换热器的一侧,前者减少了整机的体积,但对气流产生了阻力,也不便于维修,后者虽然体积较前者大,但避免了前者的缺点。具体对换热器表面采用何种表面处理方式,应根据换热器的具体使用场合与要求而定。

小型风冷式冷热水机组的制冷系统及控制要求小型风冷式冷热水机组的主要组成包括压缩机、风侧换热器、水侧换热器、节流机构、高压储液器、四通换向阀、汽液分离器等。

(1)压缩机。早期的小型风冷式冷热水机组大多选用活塞式压缩机,近年来涡旋式压缩机得到了广泛的应用。

(2)风侧换热器。目前使用的风侧换热器大都为翅片管式换热器,换热管采用紫铜管,管径@用内螺纹强化传热管,传热系数可提高20%以上。翅片材料为铝,片厚为0.150.25mm,节距为2mm左右。翅片型式一般有平片、波段片和冲缝翅片三种。冲缝翅片的传热系数最高,但在结霜工况下,冲缝翅片的气流阻力大。

风侧换热器的工作特性直接受大气条件的影响,因此,风侧换热器性能的优劣,对整个机组的性能有重要的影响。在进行风侧换热器设计时,应针对不同地区的气候特点,正确确定换热面积、翅片间距、换热器分路数等参数、兼顾制冷、制热工作的特点,对于偏冷而相对湿度高的地区使用的风侧换热器,要特别注意结霜工况下换热器的工作特性。理论与实验研究表明,对换热器表面进行憎水处理,机组在结霜工况下运行时的制热运行时间延长,可提高热泵制热能力。

喷射泵的工作系采用“伯努利方程”的原理,即流体流速越高其流体压力越低。对船舶而言,主要通过喷射管内高速通过的水流(一般为连接甲板消防总管地消防水),在吸口端产生负压真空而将积水排出舷外。正是由于这个特点,现场检验应注意每个喷射泵不能连接多个污水井,否则只要任何一个污水井抽空,则负压真空不能建立,从而导致系统不能工作,但是并不排除喷射泵同时连接污水井和锚链舱,只要在连通锚链舱的管路上设有截止阀并处于常关状态。

污水井的排水管路的管径应满足船级社的最低要求,一般应不小于50mm,目前对现有船系统的排量并无强制要求,建议为不小于320a(a为服务于该处所地最大通风筒或空气管地截面积),但对于2005年1月1日及以后签订建造合同的船舶,该要求则为强制要求。污水井吸口处应设有隔栅。系统安装完成后,应当逐一对污水井进行效用试验,全部合格后可以将所有污水井一同进行效用试验。有关电子设备的电气防护等级和“防撞舱壁前的压载水舱”的要求并无不同。通往锚链舱的截止止回阀应保持常关,其余阀门(除电控阀门外)应保持常开。检验时发现含有碳氢化合物。而且随着生产时间的延长,碳氢化合物含量不断上升,直至超标。严重影响了氩气产品的正常生产。

热源调节只有在热网管经比较大的情况下,增加减少流量可以保持或接近供热系统水力工况的稳定性时,方能进行。调节中的故障处理在实践中,要解决冷热不均相差比较大的问题,往往容易解决,这一般是由于木块、石子堵塞或使空气堵塞水平管的坡向不对或自动排气阀失灵。要解决冷热相差不大的问题,就不大好解决。有些方外环境温度高于室外计算温度时都可以进行质调。质调连续运行方式应用上述质调供、回水温度,根据环境温度,调整锅炉的运行工况,达到相应的供、回水温度,可以节约燃煤。节能已成为国民经济可持续发展、企业增加经济效益及提高市场竞争力、保护环境的重要手段。当今,节能产业需要国家相关政策、信息引导、技术服务和与之相适应的投融资机制的支持。为此,国家经贸委节能信息传播中心将举办最佳节能实践研讨会。欢迎各单位有关人员报名参加。

研讨会内容(一)我国节能政策与节能融资机制“十五”规划及国家经贸委资源司节能工作要点。我国节能项目融资机制的探讨(节能服务公司)二期运作机制)节能项目如何申请中小企业创新基金(二)专家讲座过程能量优化、水煤浆技术、空调节能技术、新型节能电光源技术、三次谐波滤波技术(三)案例技术讲座电机调速技术(变频与斩波内馈)、蒸气冷凝水回收技术、连续式工业制备乳化重油技术、绿色照明节能设备、环保节能型制冷剂、工业锅炉综合节能改造、脱硫除尘技术。

由于二级调节采用蓄能器工作,因此,在多数情况下,原级泵都配置压力调节泵。这有一个缺点,在马达开始加速的时候,泵还不能进行调节,因此,也不能向系统供油。在蓄能器已经建立起压差之后,才能产生调节信号,而使泵摆动。由于这个压差很小,所以dr调节器的开口很小,因此,泵也不能以其最大可能的速度摆开。这个缺陷可能会在动态中引起循环的延迟。在这里可以采用大蓄能器,或一个调节式泵系统进行帮助:可以在一定的时间点(早期给定值提前量)向泵发出摆开信号,使一级泵在马达开始动作时,就已经处在它的最大摆角位置,并向系统供油。

在主轴刹车时也是一样:由马达输回给压力网的过剩能量不能由蓄能器收回,通过一级泵的反向供油来平衡。因此,恒压或一级泵能生成一个极稳定的压力网。这种可能性只由调节式系统才能提供。除去控制油泵外,还可以在通轴传动的轴向柱塞泵上加装其它型号的泵,并与其相结合。对于有长短桩相间的cfg桩施工,其测量放样桩上可以系上不同颜色的塑料带以示标记,也利于施工员查找。在施工过程中,测量技术人员必须不断地复查,看有无损坏或扰动的放样桩,如果有应及时恢复。

试压泵如果出口阀关闭不严,由于泵腔、泵出口的压力差,流体就会通过出口阀间隙由出口管流回到泵腔内,不仅使泵的容积效率减小,而且泵出口的高压还会传递给柱塞,使得柱塞自动完成吸程。造成流量减小,压力不能连续升高。问题得到了解决,保证了装置的稳定生产,降低了配件消耗和工人的劳动强度,还大大降低了电耗。经测算,加装变频调速器后,电动机的功率由原先的55kw降至现在的31。

通过采取加装变频调速器的方法,对于改善多级离心泵在低于设计工况较多的条件下的运行状况具有显著的作用:既达到减小流量和扬程的目的,又有效地改善泵的运行工况,防止“汽蚀”现象的发生,降低了泵体的振动值,同时还可以大幅度减少电耗,减少能耗。对于实际运行中出现类似工矿的多级离心泵,不失为一种比较适用的解决故障的措施。这种情况下,用户认为泵有质量问题,准备更换新泵。为了找出泵故障的真正原因,将泵放在试验台上重新作了试验,此时无论流量、压力还是操作过程中感到的柱塞力都完全正常。此时分析可能是泵的安装使用过程中的使用环境和使用条件可能有误。在现场发现由于安装位置的限制,泵的人口处的进水是间断、不连续的。

新风状态点w经主动轮等焓除湿和显热换热器等湿降温后达到状态点2,此时并未达到送风状态的温、湿度要求,需经下一级主动轮等焓除湿和经显热换热器等湿降温后处理至送风状态点的转轮除湿系统是针对室外高温高湿情况的另一种组合布置,为加大除湿能力,回收回风能量。新风状态点w经被动轮全热交换达到状态,再经主动轮等焓除湿和显热换热器等湿降温后达到送风状态点,空调系统的复合驱动制冷机组压缩机的能量约占燃气发动机输入的30%,输入能量约60%转化为余热,其余约10%不可回收,利用燃气发动机余热是提高能源利用率的关键。

转轮除湿系统的吸湿剂需要再生热源,利用燃气发动机余热作为转轮吸湿剂再生热量,提高了机组的一次能源利用率。能源价格当地天然气价格与电价格比(以下简称气电价格比)是燃气发动机驱动制冷机组运行费用的决定因素,我国天然气价格受长输管道成本限制,居高不下。因此,降低运行费用成为复合式空调系统发展的关键。复合式空调系统设计单冷或热泵型燃气发动机驱动制冷机组主要选择压缩式制冷方式,目前采用活塞或螺杆压缩式热泵机组最为普遍。转轮除湿系统必须根据除湿能力、再生温度并结合室内外计算参数设计适用的组合布置形式和空气处理过程。采用主动轮和被动轮,利用被动轮回收回风冷量。

空气能热水器在维修上面还有一些技术难点有待突破,往往这些维修难点也是维修的重点,是保证一个机器质量好坏的关键因素。在空气能热水器技术维修上一般都会出现几个问题:

首先,除霜问题,除霜问题一直是空气能热水器的难点,目前市场上通用的除霜方法无非就是两种,电热除霜和四通阀反向除霜,但是实践证明这两种方法并不是最好的除霜方法,需要寻求新的除霜方法,除霜效果好,能够在质量品质上提升很高一个档次。

其次,空气能热水器工程质量,主要是安装问题,从工程设计到安装、质检、验收管理都非常的重要,在每一个环节上面都需要严格的把关,只有这样才能保证机器的可靠性,提升口碑,这块也是维修的难点,因为每一个部件都要去排查。

然后,空气能热水器家用市场,家用市场才是热水器真正的市场,中国家庭数量巨大,市场潜力无限,空气能热水器自然需要抓住这个市场,但是事实上这片市场还是空白,以后家用机市场必定是个商家的必争对象,家用机用水显然对工程机更加的要求舒适性,其难度自然会比工程机要高一些,因为家庭空间的限制,水箱和机组肯定在体积上有所限制,可能水箱和机组会结合在一起,这对维修也是一个挑战。

空气能热水器在我过才刚刚开始起步,但是在十几年的发展过程中,其进步是显而易见的,潜力巨大,加之现在人们对节能环保意识的提高,政府对节能产品的扶持,无疑给空气能热水器铺平了道路,将来的热水器市场必定会被空气能热泵所占领,谁能够成为赢家,就看谁的质量做得好,谁的服务做得好,谁的维修做的好了。

风冷模块即压缩机,制冷原理;从压缩机排出的高温高压气体通过四通换向阀进入到翅片冷凝器放热冷凝,冷凝完后的高温高压液体流经单向阀进入到储液器,从储液器出来后经过干燥过滤器、膨胀阀,经过单向阀进入冷热水换热器与水进行换热,蒸发完后的汽液混合物经过汽液分离器的分离后回到压缩机的吸气端,完成整个压缩过程。

制热原理:从压缩机排出的高温高压的气体通过四通换向阀进入到冷热水换热器,被冷凝完后的高温高压的液体经过单向阀进入到储液器,经过干燥过滤器和膨胀阀节流后,在经过单向阀进入到翅片换热器进行蒸发过程,蒸发完后的汽液混合物在气液分离器分离后,气体回到压缩机的吸气端,完成整个压缩过程。

风冷模块机组的主要特点

1、是以空气为冷(热)源,以水为供冷(热)介质的 中央空调机组,即冷凝器为翅片式换热器,蒸发器为水氟换热应用的换热器,如套管、壳管及板式换热器等。

2、作为冷热源兼用型的一体化设备,风冷热泵省却了冷却塔、冷却水泵、锅炉以及相应管道系统等多种辅件,系统结构简单,安装空间节省,维护管理方便而且节约能源,尤其适用于水源缺乏区域。

3、风冷热泵机组通常是许多冬冷夏热,既无供热锅炉,又无供热热网,或热网供热时间短、不稳定,要求全年空调的暖通工程设计中优先选用的有效补充。

4、其与风机盘管、空调箱等末端装置所组成的集中、半集中式中央空调系统具有布置灵活、控制方式多样等优点。

 百度百科--风冷模块

风冷模块就是将机组做成单独的模块式机组,可以单独使用,也可以根据需要组合使用。

2、风冷模块主机水量大怎么办

风冷模块主机水量大解决方法如下。

1、水流开关保护,用于判断水流量,当水流量过低时,水流开关断开。

2、主板接收水流开关断开信号,并将信号传递给显示板、水泵,机组不启动或停机

3、风冷模块主机水量大是不影响的,合适的水流检测方法以及检测部件可以保证机组只在系统水流量大于允许的最小水流量下工作,在很大程度上可以避免空调主机发生故障。

3、风冷热泵空调系统的设计方法?

风冷热泵空调系统的设计方法具体包括哪些内容呢,下面中达咨询招投标老师为你解答以供参考。

空调负荷与容量的确定

空调负荷包括空调冷负荷和空调热负荷。空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。

在空调系统设计过程中,空调负荷计算是第一步。空调负荷的计算应包括空调设计计算负荷的确定和各时段负荷的分析;其次,设备的容量必须满足空调设计计算冷(热)负荷的要求;另外设备的配置应适应空调负荷变化的特点。在以空气源热泵型冷热水机组为冷源的空调系统设计中,热泵机组的容量既要考虑到大楼各部分的同时使用系数,还应考虑到热泵的实际制冷量和实际供热量会因设备间距限制等原因造成通风不畅,部分气流短路(这部分的出力损失约占5%左右)而受到影响,和室外换热器表面积灰和表面结垢、设备衰减等因素的影响,故所选择的热泵机组应考虑安全系数。

由公式来表示:Q=β1?β2?QD.

式中:Q——热泵机组在设计工况下的制冷(供热)量,KW

QD——设计计算负荷,KW

β1——同时使用系数,由具体工程定,一般为0.75~1.0

β2——安全系数,一般取1.05~1.10

另外,热泵机组既要满足系统夏季的供冷要求,又要满足系统冬季的供暖要求。不同供应商的热泵机组的额定制冷量、额定供热量的参数不尽相同,与各地区空调室外设计参数不一定一致。对南京而言,一般供应商所提供的热泵机组额定制冷工况条件与实际一致或相近,一般空气干球温度为35℃,空调冷冻水进出水温度分别为12℃、7℃左右。而冬季制热的额定工况条件为室外空气温度7~8℃,进出水水温为50-55℃。这一条件与南京地区冬季空调设计计算温度相差甚远。南京气候特征为冬冷夏热。对于一般办公、酒店为主的综合楼,冬季空调供暖设计计算热负荷约为夏季空调设计计算冷负荷的70-85%.在热泵机组选择时,应查看热泵机组对应于当地设计计算气象参数条件的真实出力。如果热泵机组在设计计算室外参数条件下的制冷量大于设计计算冷负荷,而制热量等于热负荷,则应以热负荷为准选择热泵。反之,如果制冷量满足设计计算冷负荷要求,而供热量大于所需热量,则可考虑部分选用风冷型冷水机组,部分选用风冷型热泵机组,以减少投资。一般情况下,按夏季冷负荷选定的热泵,能满足冬季供暖的要求。

机组类型与台数的确定

风冷热泵型冷热水机组根据压缩机的不同可分为涡旋式热泵机组、活塞式热泵机组和螺杆式热泵机组;按机组结构大小、组合规模不同,热泵机组可分为整体式热泵机组和模块式热泵机组。整体式热泵机组与模块式热泵机组没有本质的区别,所谓模块式热泵就是指一台热泵机组由若干台热泵单元(有独立的制冷回路,独立的蒸发、冷凝,独立的框架,甚至有独立的控制板)并联而成,各单元增减组合灵活方便,任意一单元的故障不影响其余各单元的工作。

国内的热泵机组生产企业以生产模块式热泵机组为多,而整体式热泵机组从外观上看是一组合单元、一整体框架,虽然内部可有多台压缩机,甚至有两个以上的制冷回路,但它们之间一般不可再分解。模块式热泵机组的主要优点是噪音低、振动小,由于系统总的制冷回路多,冬季化霜时对系统水温影响小。系统互备性也好。另外,热泵机组一般置于屋顶,模块式热泵机组由于各单元组合灵活,各单元尺寸小、重量轻,故具有运输、吊装、安装方便等优点。如工程较大,模块式热泵机组会由于制冷单元数量较多,而存在故障点多、维护量大的可能性,额定工况下的效率也略低于整体式机组。另外,由于模块化热泵一般采用板式换热器,对水质要求较高,对各单元之间水力平衡的要求也较高。综上所述,对较小系统,或对尺寸、重量、吊装等有特殊要求的场合,模块式热泵有其优越性。

至于活塞式热泵机组与螺杆式热泵机组,从理论上讲,螺杆式热泵机组的运动部件少,维护量少,效率高,噪音也低。但由于热泵的噪音很大一部分来源于风机,而且压缩机的噪音可以通过加隔音罩等办法降低,故实际上螺杆式热泵的噪音比活塞式热泵的噪音略低(约3-5dB(A))。另外,对于热泵机组的热阻主要在室外换热器侧,热泵的效率受两器面积等因素的影响,故从工程角度出发,螺杆式热泵与活塞型热泵在效率上的差异有限,但螺杆式热泵的价格高于活塞式热泵。

关于制冷剂问题,有条件时尽可能选用对环境影响小的制冷剂,如R134a、R407C等,其中应优选R407C,其次是R134a;从制冷剂价格考虑,目前最便宜的是R22.

热泵机组的位置

热泵机组的位置有下列几种:一是置于裙楼顶,二是置于塔楼顶,三是置于窗台,四是置于净高较高的室内。考虑到吊装及日后更换等原因,热泵机组较多的置于裙楼顶。当热泵机组置于裙楼顶时,要评估其对主楼及周围环境的影响,较大的热泵机组(≥200RT),单机噪音在75~85db(A)左右。有必要时可加隔音屏障,或在主楼靠机组侧避免开门,做双层窗或高质量中空玻璃取代普通单层玻璃窗。布置于窗台的热泵机组往往是每层要求独立配置、单独计量的场所,只限于较小容量的热泵机组,宜采用侧进风侧排风的形式。选用上排风热泵机组时应安装导流风管,改成侧排风。即使室内有较高净空,热泵机组置于室内是不可取的,受条件限制必须设置于室内时,室内应有穿堂风可利用,要有足够的进风面积,并将排风通过风道有组织地排至室外,防止气流短路。加接排风管时,对风机应作相应的调整,避免因阻力的增加而减少通风量。比较理想的方法还是将热泵机组置于塔楼顶,使热泵机组有良好的通风条件,并使噪音影响面降为最小。

但应注意,热泵机组不能临近住宅或其他对噪音要求较高的房间布置,不得紧贴住宅(客房)上面或下面布置热泵机组及水泵。热泵机组宜采用弹簧减振器隔振,减振器型号及布置点经计算确定。热泵机组靠女儿墙及主楼的距离大于3m,机组间的间距不宜小于3m,有条件时距离应加大。热泵机组的布置除考虑对周围环境影响小,通风好外,还应考虑管线布置、设备吊装及以后的更换等因素,有条件时留出1~2台机组位置,为以后发展留下余地,并为设备安装及更换考虑足够的荷载条件。

水泵的选择与布置

水泵的数量宜与热泵机组的台数相对应。热泵机组与水泵的连接方式宜采用一对一串联的方式,热泵机组与水泵联动。热泵机组数量较多时,水泵可贴临热泵机组布置,水泵应具有防水性能并加挡雨吸音罩;热泵机组数量较少时,水泵宜集中布置于室内。备用水泵可采用先不安装而临时替换的方法。如果水泵采用先水泵组并联再与并联的热泵机组相串联的方式,则并联的热泵机组数量不宜超过6台,并应有可靠的水力平衡措施。这种连接方式应将水泵布置于临近热泵的室内,也可以置于地下室,水泵的台数应考虑1~2台的备用泵。在选择水泵规格时,尽可能选低转速泵,以减低噪音,水泵的流量可按系统所需流量的1.1倍选取,水泵的扬程应等于系统所需克服的总阻力。水泵的功耗应控制在热泵出力的1/30之内。水泵的布置要有一定的间距,有条件时预留1~2台水泵的安装位置以备发展之需。水泵也应有可靠的隔振措施。

末端设备的选择(一级)

夏季工况条件下,热泵机组额定供回水温度分别为7℃和12℃,这与一般空调器的额定工况相一致,空调器的选择计算与其他形式的空调系统相一致。冬季工况条件,热泵空调系统在额定条件下(室外空气8℃),热泵机组的额定供回水温度一般分别在47℃、42℃。而当室外温度较低时,热泵空调系统的供水温度一般维持在39~40℃。这一水温条件明显低于锅炉供热系统的额定供回水温度(分别为60℃和50℃),也即低于一般空调器性能参数表中给出的额定进出水温度(也分别为60℃和50℃),由于水温不一样,空调器的散热量有明显差异。有学者因此认为热泵空调系统的末端设备应在夏季工况计算选择结果的基础上有所放大。但根据我们的计算,南京地区热泵空调系统的末端可以采用夏季制冷工况条件下的计算选择结果。这一方面是由于南京地区一般建筑物的采暖热负荷小于夏季供冷冷负荷,另外,同样的空调器,60℃进水温度条件下的供热量明显大于7℃进水条件下的制冷量。冬季当进水温度降至39~40℃时,空调器的散热量能满足室内供暖的要求。此外,习惯上按中档参数选择空调器,本身就有一定的裕量。如果热泵空调系统有4个以上的制冷回路,化霜对水温不会造成明显的波动,故不会影响室内温度的波动。但当热泵系统只有1~2个回路时,为减少化霜对室内温度的影响,有条件时,可将空调器启停控制与水温同步,如当水温低于35℃时,空调器风机停止运转,当水温高于35℃时风机恢复运转。这样可有效提高室内的舒适性。

4、风冷中央空调维护保养

一起来了解风冷模块中央空调日常使用及保养注意事项吧!

  1、电气连接:提供的电源应在压缩机的允许范围内。

  2、确认在接线端、交流接触器主板等处没有连接错误。确认所有的电气连接无松动。所有的电气元件(交流接触器,继电器等)都稳固安全地连接。

  3、特别要注意控制元件和电控箱之间连线的情况以及电源线。电线不能扭曲,绝缘层不能有裂缝和开口,检查启动和运行的耗能在允许范围内。

  4、水系统连接:确认水系统不漏水,如机组停机时间较长,则需打开水泵的排水阀排空水泵、换热器以及所有水管中的水。如果环境温度可能降至0℃以下,就更要这样做。如果不排空机组中的水,电源主开关就必须保持闭合,机组设置为制热模式,这样就可以通过制热温度传感器来防止冰冻。

  5、热交换器的清洗:

  在一些使用过程中,比如:使用硬水,就会产生水垢。在这种情况下建议安装用于除垢的过滤器。热交换器用清洗液体进行清洗。可以使用弱酸溶液,清洗液体用泵打入热交换器中。为了达到好的清洗效果,酸溶液的循环流速应是平常水流速的1.5倍,如果能够反向再用酸溶液冲洗一下效果更好。最后再用大量水进行反复冲洗把酸溶液清洗干净。应定期进行清洗,不应等到机组阻塞时才进行清洗。清洗的频率根据所使用的水质而定,但一般半年清洗一次比较合理。

  6、制冷剂回路:

  确认制冷剂和润滑油不会从压缩机中泄漏出来。检查高低压侧的压力是否正常。

  7、控制:检查所有继电器的运行,高低压保护和控制。

  8、在更换制冷环路中的任何组件前,确认所有充足的制冷剂已从机组的高低压侧排空。制冷系统的控制元件灵敏度是很高的,如需要进行更换时,需特别小心,不要在焊接时让这些元件过热,焊接时在零部件上包上湿布,火焰不要直接对着零件。

  9、如果要替换机组的制冷剂,其数量应和铭牌数据对应。在更换之前尽可能排空原有的气体。

  10、在机组运行过程中,所有的面板必须安装到位,包括控制箱的面板。

  11、如果必须切断制冷剂环路的管路,就要使用割管器,不要用产生铜屑的工具。所有制冷环路的管子均采用制冷专用的铜管

  12、空调机组在换季第一次使用时,运行24小时后,必须清洗水泵进水端的水过滤器。

  13、严禁频繁操作或玩弄主机各操作开关,严禁频繁开关机,以免减短机组使用寿命。

  14、主电路电源开关在正常使用期内不能断开。

  15、正常使用期内应每月进行一次全机检查,具体包括;

  ① 检查电线连接的紧固螺栓有无松动;

  ② 机组各运行部件有无杂音,运行是否正常;

  ③ 各电器部件运行电流是否正常,绝缘电阻是否正常。

  16、风冷模块机组空气侧换热器应经常检查,视污染情况可用一定压力的清水冲洗,每年至少两次,以保证良好的换热效果。

  以上就是风冷模块中央空调日常使用及保养注意事项

5、风冷模块空调噪音太大怎么消除

风冷模块空调噪音太大可以排除异常,消声隔声隔振。对于风冷式空调室外机,当运转噪声较大的时候应首先检查确认空调制冷系统运行状态是否正常,确保系统运行状态正常以把运转噪声降低。

空调即空气调节器。是指用人工手段,对建筑或构筑物内环境空气的温度、湿度、流速等参数进行调节和控制的设备。

空调是现代生活中人们不可缺少的一部分,空调为人们提供了凉爽,但同时空调常开也易引起疾病,如“空调病”等,需要慎用。一般包括冷源/热源设备,冷热介质输配系统,末端装置等几大部分和其他辅助设备。

主要包括,制冷主机、水泵、风机和管路系统。末端装置则负责利用输配来的冷热量,具体处理空气状态,使目标环境的空气参数达到一定的要求。